553 research outputs found

    Reverberation chambers a la carte: An overview of the different mode-stirring techniques

    Get PDF
    Reverberation chambers (RC), a name inspired in room acoustics, are also known in literature as reverberating, reverb, mode-stirred or mode-tuned chambers. In their basic form, they consist of a shielded metallic enclosure, forming a cavity resonator, together with some mode-stirring mechanism. The main goal of such stirring mechanism is to generate an amplitude-varying electromagnetic field that is ideally statistically uniform

    V-Edge: Virtual Edge Computing as an Enabler for Novel Microservices and Cooperative Computing

    Get PDF
    As we move from 5G to 6G, edge computing is one of the concepts that needs revisiting. Its core idea is still intriguing: Instead of sending all data and tasks from an end user's device to the cloud, possibly covering thousands of kilometers and introducing delays lower-bounded by propagation speed, edge servers deployed in close proximity to the user (e.g., at some base station) serve as proxy for the cloud. This is particularly interesting for upcoming machine-learning-based intelligent services, which require substantial computational and networking performance for continuous model training. However, this promising idea is hampered by the limited number of such edge servers. In this article, we discuss a way forward, namely the V-Edge concept. V-Edge helps bridge the gap between cloud, edge, and fog by virtualizing all available resources including the end users' devices and making these resources widely available. Thus, V-Edge acts as an enabler for novel microservices as well as cooperative computing solutions in next-generation networks. We introduce the general V-Edge architecture, and we characterize some of the key research challenges to overcome in order to enable wide-spread and intelligent edge services

    Gallot-Tanno Theorem for closed incomplete pseudo-Riemannian manifolds and applications

    Full text link
    We extend the Gallot-Tanno Theorem to closed pseudo-Riemannian manifolds. It is done by showing that if the cone over a manifold admits a parallel symmetric (0,2)−(0,2)-tensor then it is Riemannian. Applications of this result to the existence of metrics with distinct Levi-Civita connections but having the same unparametrized geodesics and to the projective Obata conjecture are given. We also apply our result to show that the holonomy group of a closed (O(p+1,q),Sp,q)(O(p+1,q),S^{p,q})-manifold does not preserve any nondegenerate splitting of Rp+1,q\R^{p+1,q}.Comment: minor correction

    A novel IEF peptide fractionation method reveals a detailed profile of N-terminal Acetylation in chemotherapy-responsive and -resistant ovarian cancer cells

    Get PDF
    Although acetylation is regarded as a common protein modification, a detailed proteome wide profile of this posttranslational modification may reveal important biological insight regarding differential acetylation of individual proteins. Here we optimised a novel peptide IEF fractionation method for use prior to LC-MS/MS analysis in order to obtain a more in depth coverage of N-terminally acetylated proteins from complex samples. Application of the method to the analysis of the serous ovarian cancer cell line OVCAR-5 identified 341 N-terminally acetylated proteins, 23 of which are previously un-reported. The protein peptidyl-prolyl cis-trans isomerase A (PPIA) was detected in both the N-terminally acetylated and un-modified forms, and was further analysed by data independent acquisition in Carboplatin responsive parental OVCAR-5 cells and Carboplatin resistant OVCAR-5 cells. This revealed a higher ratio of un-acetylated to acetylated N-terminal PPIA in the parental compared to the Carboplatin resistant OVCAR-5 cells, and a 4.1-fold increase in PPIA abundance overall in the parental cells relative to Carboplatin-resistant OVCAR-5 cells (P = 0.015). In summary, the novel IEF peptide fractionation method presented here is robust, reproducible, and can be applied to the profiling of N-terminally acetylated proteins. All mass spectrometry data is available as a ProteomeXchange repository (PXD003547).Florian Weiland, Georgia Arentz, Manuela Klingler-Hoffmann, Peter McCarthy, Noor A. Lokman, Gurjeet Kaur, Martin K. Oehler, and Peter Hoffman

    Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation

    Full text link
    The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN3ArN_3) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (89Zr−mAbs^{89}Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, 89Zr^{89}Zr-radiochemistry, and light-triggered photoradiosynthesis of 89Zr^{89}Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN3ArN_3 reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365–450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds 1–14 produced the corresponding 89ZrDFO−PEG3−HSA^{89}ZrDFO-PEG_{3}-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds 1–14 to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates

    Effective Viscosity of a Dilute Suspension of Membrane-bound Inclusions

    Full text link
    When particulate suspensions are sheared, perturbations in the shear flows around the rigid particles increase the local energy dissipation, so that the viscosity of the suspension is effectively higher than that of the solvent. For bulk (three-dimensional) fluids, understanding this viscosity enhancement is a classic problem in hydrodynamics that originated over a century ago with Einstein's study of a dilute suspension of spherical particles. \cite{Einstein1} In this paper, we investigate the analogous problem of the effective viscosity of a suspension of disks embedded in a two-dimensional membrane or interface. Unlike the hydrodynamics of bulk fluids, low-Reynolds number membrane hydrodynamics is characterized by an inherent length scale generated by the coupling of the membrane to the bulk fluids that surround it. As a result, we find that the size of the particles in the suspension relative to this hydrodynamic length scale has a dramatic effect on the effective viscosity of the suspension. Our study also helps to elucidate the mathematical tools needed to solve the mixed boundary value problems that generically arise when considering the motion of rigid inclusions in fluid membranes.Comment: 33 pages, 4 figures (preprint); submitted to Physics of Fluid

    Land-use impacts of Brazilian wind power expansion

    Get PDF
    While wind power is a low-carbon renewable energy technology with relatively little land footprint, the necessary infrastructure expansion still has land-related environmental impacts. Brazil has seen more than a ten-fold increase in wind power capacity in the last decade. However, little is known about these impacts of wind power generation in Brazil compared to other world regions, although Brazilian wind power infrastructure is concentrated in the least protected ecosystems that are prone to degradation, desertification and species extinction. This study focuses on land-use impacts of past wind power generation development in four Brazilian federal states, covering 80% of the country's installed capacity. We assessed their spatial installation patterns, associated land-use and land cover change in the period before installation until 2018, and potential alternative installation locations, using a detailed wind turbine location database in combination with a high-resolution land-use and land cover map. In contrast to wind parks built in Europe, we found that 62% of the studied wind park area was covered by native vegetation and coastal sands. Overall, 3.2% of the total wind cluster area was converted from native vegetation to anthropogenic use. Wind parks installed mainly on native vegetation, on average, underwent higher land-use change compared to other wind parks. As Brazil intends to more than double its current wind power capacities by 2029, we explored possibilities to reduce environmental risks due to wind power expansion. We showed that this is feasible by integrating wind parks into human-altered areas, as sufficient wind resources there are available

    Notes on a paper of Mess

    Full text link
    These notes are a companion to the article "Lorentz spacetimes of constant curvature" by Geoffrey Mess, which was first written in 1990 but never published. Mess' paper will appear together with these notes in a forthcoming issue of Geometriae Dedicata.Comment: 26 page
    • …
    corecore